

Discom Production Test System

General Training

- System overview
- Theory of transmission noise analysis
- Limit value and limit curve generation
- Typical gear defects and noise problems
- Components of the measurement software
- The parameter data base
- Result data base and evaluation software
- Wave file recording and playback
- Calibration
- Test stand and line management
- Backup and restore

DISCOM SYSTEM OVERVIEW

Test Stand Environment

_DIS COM

The measurement PC in the test stand processes the sensor data and communicates with test stand control. All results are transferred into the central result database. The Discom evaluation software tools can be used in any place.

Test Stand Setup for Gear Testing

A standard gear tester uses the TAC Torsional Accelerometer as sensor and needs the precise rotational speed of either Master or Test gear (shaft).

DIS

Typical measurement

Additional sensors e.g. for condition monitoring can be added.

The Transmission Error (TE) measurement extension needs high-resolution rotary encoders on both shafts (Master and Test gear).

Working with multiple test stands

DIS COM

The result database and the parameter database master copy reside on a central server. Results are collected from the test stands to the server, and the parameter database is distributed from there to the test stands. Usually, you access the server via Web.Pal and remote desktop from your office workstation.

Discom Noise Analysis System Overview

DIS COM

MEASUREMENT HARDWARE

TAS Box Front End

The **"TAS Box**" is the data acquisition front end of the Rotas system. It is connected to the measurement PC via USB. The *TasAlyser* measurement software can run on any Windows PC with Windows 7 upwards. There are three basic models of the "Tas Box":

A **TAS28** has up to 8 A/D and four speed channels. It is the standard TAS box model. The TAS28a variant provides a sampling rate of up to 200 kHz.

The new **TAS48** has 16 A/D channels, like a double decker TAS28a.

TasNano is as small as a smartphone and provides four A/D channels. It is specifically designed for mobile applications.

Technical data:

- Sampling rates up to 200 kHz, 24 Bit A/D converters
- A/D converter module: AC, DC or ICP coupling, input voltage up to 30V
- Modular system, can be extended for up to 16 A/D channels + 4 pulse channels for rpm speed
- Rpm speed module for pulsed speed signals with up to 10 MHz pulse rates
- Power supply for up to 5 IEPE sensors only per USB

TAS Hardware Extensions

The most basic Rotas system only uses one accelerometer and one speed sensor. This system can be extended in multiple ways:

- More Sensors, also of different types (like laser vibrometer).
- Microphone measurement parallel to vibration measurement.
- More speed inputs (like using both rear output speeds in addition to the input speed).
- Torque measurement for torque ramps and/or torque fluctuation analysis.
- Shifting force measurement for manual transmissions.
- Acquisition of control values (like speeds) via CAN bus and sampleprecise integration into A/D data stream.
- Angular synchronous sampling and analysis of rotational fluctuations.

For use in vehicle drive tests, a **mobile version** of the TAS box is available (TAS-nano). It is connected to a standard notebook or tablet PC via USB. Speed information is read directly out of the CAN bus. The mobile system is fully compatible to the test stand system, so direct comparison of measurement results is possible.

TAS-Mobile will typically measure the signals of four microphones in the vehicle cabin and optionally an accelerometer attached to the transmission.

BKS Accelerometers

Sensors BKS03 and BKS 10 are pressed onto the specimen's surface. The flexible silicone ball element and ring-shaped contact plate ensure close coupling to irregular surfaces even when applied nonperpendicular. In addition, the silicone ball element decouples the sensor from test stand vibrations.

The sensor tips are currently KS91 accelerometers from Metra Messtechnik, Germany. These sensors are nearly linear up to 14 kHz, compared to a screwed-on sensor.

These accelerometers can measure up to ±700g (with standard amplifiers). ICP supply is provided by the TAS box.

MVS Magnetically Attached Accelerometer

The MVS magnetic accelerometer can be used instead of BKS sensors on test objects that move during the test.

Lightweight sensor and magnet: < 10 g for high bandwidth (beyond 20 kHz)

DIS COM

Individually replaceable

- Sensor
- Cable
- Magnet (configurable)
- Elastic Element

Cable with coaxial connector that can turn and persist high force: The sensor could be pulled off by the cable!

Easy to grip.

TAC Torsional Accelerometer

The TAC torsional accelerometer is mounted directly onto the axle of the test stand and measures torsional fluctuations instead of vibrations.

DIS

It uses two accelerometers on opposite 180° positions, so the influence of external vibrations and lateral acceleration (gravity) is cancelled. It uses inductive power supply and infrared diodes for data transfer.

Rotas Noise Analysis System

How to get an overview of your current production, NOK rate and defects

_DIS

OM

Discom Result Database Overview

DIS COM

Intranet Production Analysis: Web.Pal

Web.Pal is an intranet-based service. Using your normal web browser, you can check production statistics, NOK rates, top N defect reasons, value statistics, trend analysis and more.

The Web.Pal application itself runs on a server computer, which is in many cases identical to the result database server.

Web.Pal was designed to assist you in identifying and solving all kinds of production problems.

The starting point for different ways of analysis is the production statistics, which displays for all test stands and types the production numbers and fault rates.

You can select specific time ranges for your analysis, exclude test stands or certain error types, and use a bunch of additional options and filters.

Just click on a percent number to go to the detailed analysis.

DIS COM	HOME PRODUCTION STATISTICS HELP Fights SILVERLIGHT																	
A BRÜEL & KJÆR COMPANY			14	1	of 1	▶ 1	×	\$	100%		>	ب -	.					
DISCOM	Brüel & Beyond Meas	& Kjær 👾		Lo	kal P	rod	ucti	on S	itati	stic	5		DI	A BRÖLL & KIÆR COMPANY				
Commands	Test	Result Ov	ervie	w fro	m 1/1/	2018	8 12:0	0 AM 1	to 12	/31/2	018 11	:59 F	РМ					
Number of units tested	Detell	T-t-l			5014			5012			5013				_			
Top N Rejects	⊡ Detail	Total			EULI NOK						EOLS N NOK							
Reject Messages	Total	1526	45	2.9%	588	NUK 23	% 3.9%	528	8	% 1.5%	410	14	3.4%					
All Tests	TypE	882	16	1.8%	361	7	1.9%	303	3	1.0%	218	6	2.8%					
Single Value Statistics	Typ D	187	14	7.5%	64	8	12.5%	64	2	3.1%	59	4	6.8%					
Test History	Typ G	180	5	2.8%	58	2	3.4%	66	1	1.5%	56	2	3.6%					
	Typ F	151	4	2.6%	57	2	3.5%	48	1	2.1%	46	1	2.2%					
V. Time	Typ C	88	3	3.4%	24	1	4.2%	41	1	2.4%	23	1	4.3%					
	Тур Н	26	1	3.8%	12	1	8.3%	6	0	0.0	8	0	0.0					
	ТурА	8	2	25.0%	8	2	25.0%											
From 1/1/2018 12:00:00 AM	ТурВ	4	0	0.0	4	0	0.0					-						
10 12/31/2018 11:59:59 PM									-									
✓ Options						_												
Last Test 🔹	Report Filter							Setting										
Show/Apply	Show Meas	urements				L	astiest											
Use Base Model	Shift Times	Shift Time Off																
Shift Times	onix moo																	
Beference Units																		
Error Group Eiltor																		
Tort Stand Filter																		
Save																		

DISC

Web.Pal: Basic Operations

After connecting to the Web.Pal start page, click on [PRODUCTION STATISTICS] in the title bar to get to the main page:

Lokal

Last Y

[Number of units tested] gets you to the production statistics tabular overview.

[**Top N Rejects**] directly links to the reject statistics pie chart.

[**Serial Number**] lets you find all results for a certain serial number.

Set the **time range** for which you want to see the statistics.

Test Repetition Options: **First Test**: this looks at the first test for each serial number **Last Test**: this is your final production result **All Tests**: includes all repetitions.

A BRÜEL & KJÆR COMPANY			14 4	1	of 1		¢ (100%	. 🗸 🛃	•			
· · · · · · · · · · · · · · · · · · ·	Brüel & Kjæ Beyond measure	r 👘		Lol	kal F	Produ	uctio	n Stat	istics	D	A BRÜEL & KIAR COMPANY		
5	Test Resu	ult Ove	ervie	w fro	m 1/1/	/2018	12:00	AM to 12	2/31/2018 11:5	59 P M		I	
and Rejects by Shift	🖃 Detail	Total			EOL1		EC	12	EOL3				
Fop N Rejects	Model	N	NOK	%	N	NOK	%	N NOP	Clink				
erial Number	Total	1526	45	2.9%	588	23	3.9%	28 8	CIICK	on a	perce	ntage	
All Tests	Тур Е	882	16	1.8%	361	7	1.9%	03 3	numh	ort	n saa t	he deta	halia
Value Statistics	Typ D	187	14	7.5%	64	8 1	12.5	64 2	numb			ne ucti	incu
est History	Typ G	180	5	2.8%	58	2	3.4%	1	Top N	Rei	ects st	atistics	
	Typ F	151	4	2.6%	57	2	3.5%	48	100	nej		acistics	
	Тур С	88	3	3.4%	24	1	4.2%	41 1	23	1 4.3%			
	Тур Н	26	1	3.8%	12	1	8.3%	6 0	0.0	0 0.0	_		
	Тур А	8	2	25.0%		Drück &	Vimr 🚔		okal Prod	otion	Statistics		
71/2018 12:00:00 AM	Тур В	4	0	0.0		BEYOND MEASURE			.okari iout	reuon	otatistics		A BRÜEL & KIAF
51/2010 11.55.55 PM													г сомралу
; 	Report Filter			_		Ten			4/4/2049 42:00		10/24/0040 44	50 DM	
	Show Measurements					тор	N Reje	ts from	1/1/2018 12:00	JAIN to	12/31/2018 11	:59 PW	
Apply	Show Reference Units					ld "		All Units	Good L	nits Ba	Bad Units	Reject Rate	
ase Model	Shift Times					Over	ail	4/68	4553		215	4.5%	
īmes						LIST	-nter	44/0	4200		210	4.8%	
ence Units													
Group Filter													
Stand Filter													
									29	18	16		
									33		13		
				_							9		
											56		
										20			
									9	92			
										92			

DIS

DIS COM

To be able to understand the top N defect statistics of Web.Pal, we have to look into the analysis methods.

Rotational Synchronous Noise Analysis

The main noise source and source for torsional vibrations is the gear mesh.

There are two types of noise sources: those who can be attributed clearly to one gear (e.g. nicks, excentricity) and those which show only in the meshing (e.g. surface problems).

Total noise

Shaft revolutions

Rotation-synchronous order analysis:

The signals are sampled synchronous to the shafts (for each shaft independently).

Test Gear

Master Gear

Separation of Noise Sources

The system calculates a running (exponential) average from about 10 revolutions for each shaft.

This way, all noise components which do not repeat in each revolution are averaged out, so only the rotationally synchronous noise components remain.

Time Signals

07-11-2013 17:07 Nick on intermediate shaft

Processing Channels

DIS COM

TasAlyser computes for each rotor (and each sensor) one **synchronous channel**, which shows the acoustical properties and defects of that shaft. These channels are labelled for example "Input Shaft Sync".

In addition, the **Mix channel** is processed without rotation averaging, so it contains the contributions of all noise sources.

Energy Metrics from the Time Signals

Kurtosis

Crest

Rotational synchronous averaging separates the synchronous channels. The time signals of the averaged rotations are processed for the detection of nicks.

The values computed from the time signals are

- overall energy (RMS)
- highest value (Peak)

Hölder M8

- Crest value (= Peak / RMS)
- Kurtosis (fourth moment of signal distribution)
- Hölder Mean (like RMS with higher powers)

Peak

RMS

3 synchronous channels corresponding to 3 inner shafts.

DIS

Orders, Frequencies, Harmonics

transforms frequencies into orders.

Therefore, order spectra are independent of the rotational speed, order spectra lines stay in place even in speed ramps.

The order corresponding to the teeth number is called *"*first harmonic", labelled *"*H1". Double teeth number is *"*second harmonic" or *"*H2" and so on. The position of an order in the order spectrum is independent of the rotational speed!

= H2

= H1

Order Spectra

The rotationally synchronous analysis generates periodic (cyclic) signals. This corresponds to the cyclic nature of the gear sets. These signals can be transformed into the spectral domain without any time domain windowing, thus giving exact order spectra.

This allows for high spectral resolution with up to 60 dB SNR. Eccentricities (Ecc) can be easily distinguished from the gear mesh orders. All kinds of modulation can be detected. The noise components can be traced to their origins.

Blue: Conventional spectrum with Kaiser Bessel Window.

Green: Rotationally synchronous order spectrum without windowing function.

DIS

Processing Channels Spectra

In TasAlyser, order spectra are computed in parallel for all processing channels (and sensors).

This gives order spectra for each rotor plus the Mix spectrum:

DIS

In addition, "classical" fixed frequency FFT channels (labelled "FixFs") are processed in parallel.

Discom Production Testing

For setting up the spectral values in the data base, positions are given relative to gear mesh frequencies (H1, H2 and so on). The measurement program calculates the resulting order positions using the kinematics model of the transmission.

For order bands there is

extracting the maximum

or the energetic sum.

the choice between

From the order spectra, at positions of interest (e.g. gear mesh orders, side bands) **spectral values** are extracted.

These values generate their own statistics, and separate limits can be applied.

Values from Order Spectra

dBg

Order Tracking

The components of a transmission that cause the most prominent spectral components are its gear mesh orders. A finely tuned evaluation of the resulting audibility inside the car is possible with order tracks.

The fundamental harmonics of the principal gear mesh(s) are recorded over rpm speed (or torque). Limit curves can be adjusted according to the car's sensitivity at different speed ranges.

All kinds of spectral values (single orders, sums of orders or complete bands) can be tracked. Different kinds of evaluations are possible.

Speed Band Evaluation

For **Speed Band evaluation**, rpm speed intervals are defined (e.g. 3500 – 4700 rpm). The evaluation takes the maximum of an order track within the speed band and compares this to a limit value.

Thereby, gear mesh noise and other noise sources can be evaluated in critical speed ranges with easy-to-manage single values.

Speed bands can be defined individually for each test step and order track; multiple speed bands are possible.

A more advanced form of speed band evaluation is evaluation of the area between track and a reference polygon.

E-Drive Analysis

DIS COM

In E-Drive test, noise components from the transmission and the electric motor can be identified and separated:

E-Drive Testing

"Tick Channel" Analysis

This channel uses a special processing chain to better detect ticking noises (from nicks), even in the presence of loud gear mesh noise.

The analysis is based on a rotational synchronous time signal.

From this signal and based on the teeth number known from the parameter data base, the "average tooth" is calculated and subtracted from all teeth. (\rightarrow *Time Signal Tick*) This way, deviations from the "average tooth" are emphasized.

On the Tick channel signal, a running Kurtosis is calculated (*Kurtosis Tick*), which detects these deviations. The peak and Crest values of the Kurtosis curve are compared to limit values.

Combustion Engine Analysis

Combustion Engines produce instationary noise patterns which cannot be covered by simple spectral analysis.

A short time spectrogram calculated over the working cycle of the engine (720° crank shaft) allows the detection of pulse noises correlated to the different engine components.

The Cycle Spectrogram Bands are evaluated against limit curves running over the angular position. This allows the detection of defects correlated to cylinders, valves etc.

DIS

Cycle Spectrogram

The Cycle Spectrogram is a short time spectrogram aligned to the engine working cycle.

DIS COM

UNRESTRICTED

Synchronization to Working Cycle

Resampling = Partitioning of source signal into revolutions with fixed number of samples/revolution

- Each output block of the Resampling must start with a 0° sample position
- Necessary: 0° information, in addition to regular speed
- The 0° position markers are "attached" to the regular speed data
- Can also be used in gear testing application (mark tooth with nick)
- Source of 0° information can be a normal pulse signal (1 pulse per revolution = TDC signal), or the cam shaft pulse pattern.

Crank shaft speed signal: 60-2 pulses/rev.

Cam shaft speed signal: pattern of long/short pulses

Combustion Engine Testing

Modulation Detection using Envelope

DIS

Transmission Testing
Modulation Spectrogram

DIS

Modulation Analysis

Steps of Modulation Analysis, very useful for actuators

DIS COM

Gearbox Testing

0

Shifting Force Evaluation

Measurement:

0

The system measures force and position over time and constructs the curves *force versus position*,

for shift-in and shift-out directions, separated by gears and conditions (like shift up / down)

 $5 \quad 10 \quad 15 \quad 20$

Ν

Evaluation Overview – Transmissions, E-Drives

DIS COM

TransminsioneTesting

Evaluation Overview – Combustion Engines

DIS COM

Combustion Engine Testing

Result Types

DIS COM

The results can be **single values**, **curves** or even higher dimensional objects like **spectrograms**.

Source	Examples	Result Tyes
Time Signals	RMS, Crest, Peak	Single value
Spectra	Order spectra (synchronous and mix), fixed frequency spectra	Curve (spectrum)
Single orders taken from spectrum (or sums of orders, band sums)	Gear mesh order value H1, side bands, order sum Hx, specifically selected orders	Single value
Orders tracked over ramp	Gear mesh order track, RMS track	Curve (track)
Values computed from tracks	Speed bands, differences	Single Values
Spectra tracked over ramp	Spectrogram	Spectrogram
Short Time and Modulation analysis	Short time spectrogram, Modulation spectrogram, modulation content	Spectrogram → Spectrum / single value

Typical Gear Defects

Gearbox Testing

Separation of Gear Defects

The acoustical signal of one sync. channel contains the components of all gears connected to that rotor. (For example, intermediate shaft has two gears on it.)

Knowing the transmission ratio, the periodicity of each gear and it's gear mesh order can be calculated. Gear mesh noise originates from the pairing of the gears, not from one individual gear.

Eccentricities and surface defects can be separated because they have cycles that correspond to the originating gear. The following errors can be assigned individually:

- ✓ Nicks
- ✓ Tooth spacing
- Surface waves ("Ghost Orders")
- Eccentricities
- Deviation from circular shape

Defects resulting in generally increased gear mesh noise are unseparable (like the clapping of hands):

- General surface problems
- Contact Problems

Typical Gear Defects

Example: Nick Flattened

When a transmission gets into the EOL test stand, this is typically the first time that torque is applied to the gears.

A small nick or spike on the gear surface, or small dirt particles, will get flattened out during the first run of that gear:

It is therefore highly recommended to repeat test steps with "nick" errors, because in many cases the nick has vanished after the first run.

Logarithmic Reference

The dB scale is a <u>logarithmic scale</u> for energy values. (Human perception uses a similar scale.) dB numbers are always relative to a reference value *r*, which is called the **logarithmic reference**. Given an energy *y*, the dB value is calculated as

 $dB(y) = 10 \log(y / r) = 10 \log(y) - 10 \log(r)$

The sensors are measuring amplitudes, not energies. Therefore, if x is a measured amplitude value, the energy is proportional to x^2 , and since $\log(x^2) = 2 \cdot \log(x)$, for spectral values and similar data the formula is

 $dB(x) = 20 \log(x/r)$

 $x = r \times 10^{(y/20)}$

Examples: with x = 1g

•	for log. ref. $r = 0.1$	the dB value is 20 log(1 / 0.1)	= 20
			4.0.0

• for log. ref. $r = 10^{-5}$ the dB value is $20 \log(1 / 0.00001) = 100$ (Rule of thumb: 1 g = 100 dB(g).)

Standard logarithmic reference for vibration measurements: 10⁻⁵ g or 10⁻⁶ m/s²

Because of the logarithmic nature, any offset in the dB scale translates to a factor in the linear scale. So for example, +6 dB $\approx 2 \cdot x$, +10 dB $\approx 3 \cdot x$, +20 dB = 10 $\cdot x$, +30 dB $\approx 30 \cdot x$, +40 dB = 100 $\cdot x$.

Logarithmic Scale Illustration

Human hearing works for the whole scale, from 1 ct to 10,000€

Discom Noise Analysis System

Sound Propagation, Human Hearing

Material	Sound Velocity (m/s)	Wave leng 500 Hz	th at / 2 kHz
Air	343	67 cm	17 cm
Water	1500	3 m	75 cm
Silicone	1000	2 m	50 cm
Steel	5900 (long ↔) 3200 (trans \$)	12 m 6.4 m	3 m 1.6 m
Wood	3300	6.6 m	1.65 m
Stone	6100	12.2 m	3 m

at 3000 rpm: 500 Hz = order 10 2 kHz = order 40

DIS COM

Noise Analysis Theory

Web.Pal can be used to get insight into production processes, defect hotspots and trends.

OM

DIS

Discom Production Testing

Discom Result Database Overview

DIS COM

Discom Production Testing

Intranet Production Analysis: Web.Pal

Web.Pal is an intranet-based service. Using your normal web browser, you can check production statistics, NOK rates, top N defect reasons, value statistics, trend analysis and more.

The Web.Pal application itself runs on a server computer, which is in many cases identical to the result database server.

Web.Pal was designed to assist you in identifying and solving all kinds of production problems.

The starting point for different ways of analysis is the production statistics, which displays for all test stands and types the production numbers and fault rates.

You can select specific time ranges for your analysis, exclude test stands or certain error types, and use a bunch of additional options and filters.

Just click on a percent number to go to the detailed analysis.

DISCOM	HOME	RODUCTI	ON ST	TAT	ISTIC	CS	HE	LP				Englis	h	~		SILVER	l IGH
A BRÜEL & KJÆR COMPANY				14	4 1	of 1	▶	Þ.	\$	100%		~ 6	ب - ا	.			
DISCOM Lokal		Brüel & Kja Bevond Measure	ær 🚔	_	Lol	kal P	rod	lucti	ion S	stati	stic	5		DI	A BRÜEL & KI	A Ser NY	
Number of units tested		Test Res	sult Ove	ervie	w fro	m 1/1/	2018	3 12:0	MA 00	to 12	/31/20	018 11	:59 F	эм			
Test Stand Rejects by Shift		Detail	Total			EOL1			EOL2			EOL3					
Top N Rejects		Model	N	NOK	%	N	NOK	%	N	NOK	%	N	NOK	%			
Serial Number	То	otal	1526	45	2.9%	588	23	3.9%	528	8	1.5%	410	14	3.4%			
All Tests	Ту	рE	882	16	1.8%	361	7	1.9%	303	3	1.0%	218	6	2.8%			
Single Value Statistics	Ту	/p D	187	14	7.5%	64	8	12.5%	64	2	3.1%	59	4	6.8%			
Test History	Ту	/pG	180	5	2.8%	58	2	3.4%	66	1	1.5%	56	2	3.6%			
	Ту	/pF	151	4	2.6%	57	2	3.5%	48	1	2.1%	46	1	2.2%			
✓ Time	Ту	/pC	88	3	3.4%	24	1	4.2%	41	1	2.4%	23	1	4.3%			
Last Year	Ту	/pH	26	1	3.8%	12	1	8.3%	6	0	0.0	8	0	0.0			
	Ту	/p A	8	2	25.0%	8	2	25.0%									
From 1/1/2018 12:00:00 AM To 12/31/2018 11:59:59 PM	Ту	ир В	4	0	0.0	4	0	0.0									
✓ Options																	
Last Test	[Report Filter					5	ietting									
		Show Measuren	rents				L	ast Test									
Show/Apply		Show Reference	e Units				C	Off									
Use Base Model		Shift Times					C	Off									
Shift Times																	
Reference Units																	
Error Group Filter																	
Test Stand Filter																	
Save																	

DISC

Web.Pal: Basic Operations

After connecting to the Web.Pal start page, click on [PRODUCTION STATISTICS] in the title bar to get to the main page:

Lokal

Last Y

[Number of units tested] gets you to the production statistics tabular overview.

[**Top N Rejects**] directly links to the reject statistics pie chart.

[**Serial Number**] lets you find all results for a certain serial number.

Set the **time range** for which you want to see the statistics.

Test Repetition Options: **First Test**: this looks at the first test for each serial number **Last Test**: this is your final production result **All Tests**: includes all repetitions.

A BRÜEL & KIÆR COMPANY			14 <	1	of 1		i ¢	1009	% 🗸 🤘	•			
•	Brüel & Kja Beyond Measure	er 🔶		Lol	kal F	rod	uctio	n Stat	tistics	D	A BRÜLL & KILER COMPANY		
3	Test Res	ult Ove	ervie	w fro	m 1/1/	/2018	12:00	AM to 1	2/31/2018 11:	59 PM			
and Rejects by Shift	🖃 Detail	Total			EOL1		E	012	EOL3				
Top N Rejects	Model	N	NOK	%	N	NOK	%	N NO	Clink				
erial Number	Total	1526	45	2.9%	588	23	3.9%	528 8	CIICK	on a	perce	ntage	
All Tests	ТурЕ	882	16	1.8%	361	7	1.9%	303 3	numh	or t	n saa t	he deta	hali
Value Statistics	Typ D	187	14	7.5%	64	8	12.5	64 2	numb				ncu
est History	Typ G	180	5	2.8%	58	2	3.4%	1	Top N	Rei	ects st	atistics	
	Typ F	151	4	2.6%	57	2	3.5%	48	nop n	nej	0000 50	aciocico	
	ТурС	88	3	3.4%	24	1	4.2%	41 1	23	1 4.3%			_
	Тур Н	26	1	3.8%	12	1	8.3%	6 0	0.0	0 0.0			
	Тур А	8	2	25.0%		Drück &	Vimr 🚔	- 1		ection	Statistics	DI	
71/2018 12:00:00 AM	Тур В	4	0	0.0		BEYOND MEASUR			Lokali iou	action	otatistics		A BRÜEL & KIEF
51/2010 11:35:35 PM													r COMPANY
; 	Report Filter			_		Tem			4/4/2049 42:00	0.014	40/24/0040 44	50 DM	
-	Show Measurem	ents				гор	N Reje	cts from	1 1/1/2018 12:00	UAINI to	12/31/2018 11	:59 PM	
Apply	Show Reference	Units				ld		All Units	s Good U	Units	Bad Units	Reject Rate	
ase Model	Shift Times					Over	rall Filtor	4768	4553		215	4.5%	
īmes						LIST	Filler	44/5	4260		213	4.8%	
ence Units													
Group Filter													
Stand Filter													
•									29	18	16		
									33		13		
				_							9		
											5		
										92			

DIS

Problem Trackdown using Web.Pal

Click on a percentage number in production statistics to get the detailed rejects statistics:

This graph can also be reached by the [Top N Rejects] button on the start page.

TTO GF6 Production HBK DIS COM Analysis Reject Report from 1/1/2010 12:00 AM to 12/31/2010 11:59 PM GF6 TOT S4 7/1/2010 7:43 AM 611EJWY0181B4623 GE6 TOT S3 7/1/2010 7:41 AM 1E.IW 290 611E.IWY0181B4622 F6 TOT S4 1EJW 611EJWY0181B4617 7/1/2010 7:33 AM 290 1EJW 7/1/2010 7:31 AM OT S3 290 611EJWY0181B4616 1EJW 7/1/2010 7:23 AN Code Error Messag esh loud in 4-Drive MixRear, 460 87 063

611EJWY0181B4613

611EJWY0181B4598

611EJWY0181B459

611EJWY0181B4593

Info

of 56 🕨 🚺

> Sort

TOTS

GF6 TOT S4

GF6 TOT S3

GF6 TOT S4

1EJW

1EJW

1EJW

1EJW

290

290

290

290

Options List

DIS

🖵 🔍 •

7/1/2010 7:18 AN

7/1/2010 7:02 AM

7/1/2010 6:57 AM 7/1/2010 6:56 AM

1009

Clicking on a diagram pie piece leads to the list of measurements with this defect. Proceed from there to single value statistics, measurement history or type and test stand comparison.

From the single value statistics, you can read if the limit value should be adjusted or if changes occurred at a certain point in time.

Web.Pal can directly call the Presentation application for any measurement to show curve data and more.

Links Within Web.Pal Report

The list of defects in Web.Pal contains clickable links which lead to more information

Click on the error coo	le	i		GRUSS	Gauss	Data	Produc	tion S	tatisti	ics	DIS	co	M		
for a single value (like	2	EOL T	B1	LLL	7777	,	0133 K 080117		9/2	21/2010 12	:31 AM	83d	2/1	19 not OK	
to the single value	-	Code 901 900	Nr 0 1	Error Message Referenzgetriebe: Referenzgetriebe:	Wert Triebsatz Wert Gang	Mode 6-S 6-7	Instrument SpectralValue SpectralValue	Location Tellerrad	Param TAb_H1 GAn_H1	Channe SK6 SK1	el Pos. 35.00	Value 89.56 83.84	Limit 76.00 76.00	U dBg dBa	
statistics for this valu	e.	72 72 72 72	2 3 4	Tellerrad laut Tellerrad laut	front cang	6-S 6-S	Ord Ord Ord	Tellerrad Tellerrad	O36.00 O217.00	Tellerra Tellerra	d 36.00 d 217.0	80.43 85.46 76.12	75.00 75.00 75.00	dBg dBg dBg	
	Click	on th	e se	erial numb	er to	0-3	0212 K 090919	Tellerrau	9/2	21/2010 3:4	41 AM	70.12	13.00	/2 rpt. OK	
	open	a nev f all si	W W	indow wit	h a full	a	Instrument SpectralValue	Location Hohlwelle	Param BevAb_H1	Channe SK5	el Pos. 35.00	Value 104.5	Limit 103.0	U dBg	
	(You h	an si ave to	allo	w Popup W	/inodws i	a. n _e	0217 K 090919 Instrument	Location	9/2 Param	21/2010 3:	56 AM el Pos.	Value	1. Limit	/2 rpt. OK	
	Intern websi	et Exp te.)	lore	r Settings fo	or this		SpectralValue 0013 K 090921	InputShaft	GAn_H1 9/2	SK1 21/2010 5	These	field	ds sh	iow th	e repetition
		Code 18	Nr O	Error Message Beveloid laut / Sch	ub	Mode 5-S	Instrument SpectralValue	Location Hohlwelle	Param BevAb_H2	Chan SK5	the fir	hal re	esult	: Click	on the field to
		EOL TI	B2	LLM	4004	Mode	0010 K 090921	Location	9/2 Param	21/2010 5	opena	a nev	w wi	ndow	showing all
Click on the	e test b	ench	nan	ne to	ver	In 6	Fmin W	rein F-A	-	FXCL	(You ha	ave to	allov	v Popu w Popu	ap Winodws in
load this m	easure	ment icatio	into n	o the	ver ver	5 6	W	F-A F-B	-	raus rein	Interne	et Exp	lorer	Settin	gs for this
(Web.Pal will	downlo	ad the	e dat	a as a file	ver	4 3	w	F-A F-A	-	raus	0	448.1	0	N°	
and present Open and Sa	you the ve.)	usual o	choid	e between	wer wer	2 2	w w	F-B F-A	-	rein raus	0 0	184.4 1281	0 0	N° N°	
		Code	Nr	Error Message	4003	Mode	0005 K 090920 Instrument	Location	9/2 Param	21/2010 5:: Channe	38 AM el Pos.	Value	1. Limit	/1 not OK U	
		75	0	Welligkeit Zahnflar	nke Beveloid	4-S	Ord	BevAn	037.00	BevAn	37.00	98.75	95.85	dBg	

DIS COM

Discom Production Testing

Addressing Any Value: Clavis

The **Clavis** is the unique identification of a measurement value in the measurement application and in the data bases. It consists of 6 elements:

Test Step (= "Mode", e.g. 3-rD, Stdy, …)

Instrument (e.g. order spectrum, RMS, spectral value)

Object/Location (e.g. input shaft, pinion gear, oil pump)

Processing Channel (Synchronous, Mix, Fixed frequency)

Instrument Measurement Parameter (e.g. H1, Main Order Band)

Sensor (e.g. vibration sensor VS-1, Microphone Mic)

Because limits are distinct for types and test stands, the unique identification for a limit value has 8 elements:

Clavis + type + test bench.

-

Web.Pal Single Value Statistics

The Single Value Statistics can be reached directly from the Web.Pal start page or by clicking on a single value error code in the reject messages report.

The data range of the statistics is set in the options (see next page).

Time series and distribution also show the limit value.

In the table below, specifications about the selected metric, data range, and applied filters can be read.

This report can be exported as pdf or office document. (The export is available for all Web.Pal reports.)

Engine Test Production Statistics

Single Value Time History. Last > 1000 Measurements before Serial 0.432642V

Test Stand	Model	Mode	Instrument	1	Param	Location	Channel	Sensor
[Gauss-EOL1]	[081]	5-Rd	Spectral Value		Order4	InputShaft	Mix,VSFro	nt
Curve Data	Average	Standard D	ev.	Min	imum	Maximun	ı	Color
/alue	54.54	4.166		44.9	98	75.89		0
Limit	75.42	8.35E-06		75.42		75.42		1
		_		_				
Report Filter					Setting			

All Tests

On

Discom Production Testing

Show Measurements

how Reference Units

Web.Pal Single Value Statistics Options

DIS COM

Singe Value Statistics has flexible options for selecting data for analysis.

Discom Production Testing

Web.Pal address

When connected to the internal network with access to the server, enter this address in your web browser to call up Web.Pal:

Web.Pal was designed for Microsoft Internet Explorer 11 and needs the Microsoft "Silverlight" Browser extension. Microsoft Edge can be set up for Web.Pal.

Discom Production Testing

Your Daily Workflow

DIS COM

Discom ProductionTesting

Web.Pal life demonstration 2

Homework:

- a) try out yourself
- b) try to connect to measurement PC's Web.Pal via intranet

Discom Limit Generation

About Limits

In EOL testing, there are two major objectives:

• Find pieces which will be audible in the car

• Find pieces with defects that limit the lifetime

This requires two limit strategies:

- Fixed limits confirmed by drive tests in car
- Automatically learned limits, based on statistics

The Discom system uses a combination of **learned** and **fixed** limits which give a high flexibility for all kind of situations.

The limit parameters are controlled in the parameter database, allowing for easy management even with many different types and test steps.

Curves (like spectra and order tracks) have a limit for each curve point, resulting in a limit curve.

Generating Limit Values

The limit values and curves are based on learned production process statistics.

From the learned mean values and standard deviations, the limits are constructed according to two rules. Combining these rules, learned or fixed limits can be achieved.

The parameters for these formulas are set in the parameter data base and can be adjusted at any time. They are specific for transmission types and test benches.

In the parameter data base you set Offset, add x%, factor y, Min and Max boundary

TransminsioneTesting

Limit Calculation Examples

Calculation of the limit value:

1 Limit = Mean + x % Mean + Offset + $y \times$ Standard deviation

apply bounds: $Min \leq Limit \leq Max$

Parameter	Offset	% mean	Factor Std.Dev	Formula result (1)	Min bound	Max bound	Resulting limit (2)
for Order Valu	e with mean =	79.4, standard	deviation = 1.8				
Example 1	5	0	3	89.8	70	120	89.8
Example 2	5	0	3	89.8	95	95	95.0
Example 3	10	0	0	89.4	95	105	95.0
Example 4	0	35	1	108.99	95	105	105.0
for RMS with	mean = 5.2, sta	ndard deviatior	n = 1.8				
Example 5	1	0	3	11.6	5	20	11.6
Example 6	0	100	0	10.4	5	20	10.4

DIS

Gearbox and Transmission Testing

Limit Curves

DIS COM

For curves (spectra, tracks), the limit is learned for each position individually.

Each curve point has it's own mean value and standard deviation, and the learned limit curve is constructed point-wise according to the same method as for single values.

The Minimum and Maximum bounds are defined as polygons.

Spectral Limit Curves

For order spectra, the limit curve combines the learned spectral limit and the single value limits which are defined for gear mesh orders and side bands.

DIS C

The limit curve and the spectral value limits can have different calculation parameters!

Quantity	Offset, Mean%, Factor Std.Dev.	Min and Max boundaries	
RMS (Max) (linear)	0.3 + 150% + 1×	Min and Max from Web.Pal statistics	
Crest, Kurtosis	(fixed limits)	15 ~ 20 in Mix 12 ~ 15 in Sync	single
RMS Min	(fixed limit)	0.05 ~ 0.1	values
Spectral Values, "Speed Bands"	8~10 + 0% + 1×	Start with Min ≈ 90, Max ≈ 120, then refine from statistics or from car measurements	
Order Spectra	8~12 + 0% + 2×	Min ≈ 80, Max ≈ 120	Curve
Order Tracks, RMS Tracks (log)	8~12 + 0% + 0-1×	From statistics or mobile measurements	l s

DIS COM

Learning Process

DIS COM

The learning of the limits is done in two steps: base learning und additional learning.

The base learning encompasses only a few transmissions (e.g. 5). During base learning the measured value is compared to the *Maximum boundary* from the parameter database. At the end of base learning the preliminary limits are set.

The additional learning encompasses a lot of transmissions (e.g. 200 in total). Each one is tested against the limit values calculated from the previous tests. If it is found to be ok it is added to the statistics. This way the limit values are fine tuned.

Exponential Averaging

Exponential Average (or Moving Average) uses a recursive formula:

Example: next output value = 10% current input + 90% previous output. In that case, α = 0.9

For this averaging, the parameter α controls the weighting between current input (fast reaction) and previous outputs (history). For common applications, α ranges between 0.9 and 0.999.

Instead of setting the value of α , it is easier to use the *Time Constant* T:

For T=10, α = 0.907 (≈90%), and after t =23 the peak has decayed to 10%. For very large T (much larger than the expected number of inputs), the exponential average approximates the block average.

A test run consists of test steps.

Within each test step, values and curves are calculated and compared with the limits.

DIS COM

Discom Production Testing
DIS COM

At the beginning of each **test run**, the test stand control provides the information which gearbox type is to be measured, sends the serial number and starts the test sequence. Each test run consists of a number of **test steps**. Each test step will generate it's specific results.

Examples for test steps: "3rd gear speed ramp up (drive)", "torque ramp phase 1", "differential test".

Test steps can be run in any sequence, they can be repeated or omitted.

In each test step all measurements applicable for that test step are performed and according error messages are generated. When a test step is repeated, all results and errors from the previous run are discarded.

Command Center and Result Display

DIS COM

The **Command Center** window shows the progress of a test run. It displays the transmission type for this run, shows the current test step and signals a running acoustic measurement.

This window can also be used to manually control a test run.

↓ 结果指标

Grey = not yet

measured

R-Z

2-Z

4-Z

6-Z

The results for each test step are shown in the **Result Display** window:

		<u>-</u>
In the Analysis Results window t	the overall result and the defect me	essages (if any)
are shown. The defect messages	s consist of error code, text descript	ion, value and
limit and also show the learned	mean value.	

R-S

2-S

4-S

6-S

1-Z

3-Z

5-Z

7-Z

╋ 分析論	自果					
D12	Dq200 NKW [3005] xxx					2012-01-19.16:03:31
		NOK				
Code	Beschreibung	Wert Grenz	e Lem-MW	Position	Spezifikation	
	R-Z					
	R-S					
	1-Z					
	1-S					
	2-Z					
	2-S					
	3-Z					
12115	Sqeak bearing/any part (s-U10)	142.4	120.0	142.4	6055	End Spectrum Trans FixedFs TAC Max
12115	Sqeak bearing/any part (s-U10)	132.9	120.0	132.9	18213	End Spectrum Trans FixedFs TAC Max
12115	Sqeak bearing/any part (s-010)	137.0	120.0	137.0	6055	End Spectrum Trans FixedFs Mic Max
12040	High amplitude RWS bearing/any part (S-010)	52.1	50.0	0.0	7.37	Poak Trans FixedFs Mic Max
12000	s-1.36	/4.4	50.0	0.0	7.70	F our france integration of Mick
12515	Sqeak bearing/any part (s-L36)	142.4	120.0	142.4	6055	End Spectrum Trans FixedFs TAC Max
12515	Sqeak bearing/any part (s-L36)	132.9	120.0	132.9	18213	End Spectrum Trans FixedFs TAC Max

TransmissionTesting

- • ×

Yellow = current

test step

1-S

3-S

5-S

7-S

Speed, Control Values, Trigger

Speed, torque and similar values are called **Control Values**.

Control values specifies the terms and conditions for a measurement. They can be used for driving ramps (speed ramps, torque ramps).

Other examples for control values are time, temperature, forces or positions.

Control values are displayed in "Instruments"

Double-click on an instrument to open the settings. Rightclick on the instrument to change it's appearance. "Grab" the instrument anywhere to move it.

Ramp measurements (using speed or torque) are controlled by **Triggers**. The trigger settings are located in the parameter data base. It can track multiple control values at the same time.

Start/Stop and Track Triggers

Many projects use multiple trigger definitions: one to control the start and stop speed for ramp measurements (called 'StartStop') and one for defining the range and resolution of order tracks and spectrograms.

Start/Stop trigger and order track triggers can use different control values. Also, Start/Stop can be replaced by commands from the test stand (e.g. for measuring a steady state for a certain time).

Transmission Testing

The parameter database stores measurement setup and limit value settings for multiple types and multiple test stands. Almost all parametrization is done in the database, not in the measurement application.

System Overview: Parameter Data Base DIS COM **Parameter Data Base User Interface Parameter** ("TasForms") **Data Base** Test Stand Control **TAS Box** front end Sensor **TasAlyser** signals MMM Measurement Application MIL CAN Bus Measurement **Result Data Base Wave Files Archives**

Marvis

Measurement Data

Evaluation

TasWav-

Editor

Web.Pal

Intranet

Production Statistics

Where to find the applications

On the measurement computer's desktop, look for a folder "Rotas for Experts".

This folder contains a collection of start link for the most important tools, including the parameter database user interface.

Parameter Database User Interface

The parameter data base is a Microsoft Access data base. Thus, the data base file can be handled as a normal file (for creating backups, copying between test stands etc.)

The user interface TasForms is based on Microsoft Access. It can be switched to multiple languages.

🖽 Management of candid 🗾	
Add Base Type	
Add Type	
Remove Type	
(Design Data)	理: 💌
Test Setup)基础型号
Single Value Limits	
Curve Value Limits	^{4床空写}
Leam parameter	计数据
Commentary	试设置
Select project	!个极值
Show Advanced Settings	线极值
Ver 120207_TF	习参数
	内容
	选择项目
□ □ 显示高级	及设置
Vers:	120207_TF

The start form of the parameter database offers access to the most frequently used functions: managements of types and limit settings.

In the advanced settings, measurement setup, sensor configuration and other parameters can be changed.

TasForms automatically stores backups of previous versions when you leave the data base and confirm the changes.

Check "Advanced Settings" to expand the start form and get access to all functions:

DIS

It consists of 6 elements:

in the measurement application and in the data bases.

Test Step (= "Mode", e.g. 3-D)

Addressing a value: Clavis

Instrument (e.g. order spectrum, crest, spectral value)

The **Clavis** is the unique identification of a measurement value

- **Object/Location** (e.g. input shaft, pinion gear, oil pump)
- **Processing Channel** (Synchronous, Mix, Fixed frequency)
- Instrument Measurement Parameter (e.g. H1)
- **Sensor** (e.g. vibration sensor VS-1, Microphone Mic)

Because limits are distinct for types and test stands, the unique identification for a limit value has 8 elements:

Clavis + type + test bench.

Measurement values, limits and other parameters are addressed using their Clavis:

In all forms, in the top part the objects of interest are selected (by Clavis). The main part then only lists the according parameter entries, where they can be changed.

Use the "up arrow" button to set all fields in the column at once to the same value

Adjusting the Limits

Each limit value is calculated using these rules:

lim = Mean Value + MV% + Offset + f ×Std.Deviation
lim ≤ Max.Boundary
lim ≥ Min.Boundary

Mean value and standard deviation are stored in learn files.

Offset, MV%, factor *f*, Min and Max boundary are set in the parameter data base.

The parameters are be split into two places:

Because of their different nature, Min and Max parameters for single value limits and curve value limits are separated.

In "Learn parameter", a new learn of mean and standard deviation can be initiated (see next pages).

The three calculation parameters Offset, %Offset and Factor are entered in "Measurement Value Setup".

Depending on the project, these parameters can also be integrated into the limit value tables. In that case, there is no "Measurement Value Setup" button.

Adjusting the Limits

Each limit value is calculated using these rules:

lim = Mean Value + MV% + Offset + f ×Std.Deviation
lim ≤ Max.Boundary
lim ≥ Min.Boundary

Mean value and standard deviation are stored in learn files.

Offset, MV%, factor *f*, Min and Max boundary are set in the parameter data base.

The parameters are split into two places:

Because of their different nature, limit parameters for single value limits and curve value limits are separated.

In "Learn parameter", a new learn of mean and standard deviation can be initiated (see next pages).

New measurement values (new metrics) are also set up in the Single Value Limits or Curve Value Limits forms, respectively.

The Error Codes form is used to define defect codes and associated text messages.

Limit Settings Form

In the Limit Settings form, start by selecting the Clavis combination for which you want to review or change settings.

E	🗉 Limit Curve S	ettings									_			
		Type (Basetype)	Test Bench (Bench Gro	ip Test state	Instrument	Channel	Si	ignal	Location	n	Measurements	R]	
		025 (025)	TMMAL-EOL1 (TMMAL) High1	Spectrogr. Band	A FixFs	^ <u>V</u>	SFront	Cam Sh	naft	Max	М		
	Only Measuring	080 (080)		Low1	Spectrogram	STA	v	Slide STop	Engine	onart		F		
		083 (083)		Low2	¥	CTAY	× [<	_	
	dd Combinations	All types	All test benches			· J					All measure	P mentsD		
Ť	Basetype (Types) Bench group (T	est Test state In	strument Channel	Signal Location	meas.qua Meas	s Eval S	All signals	%Offset St	dDev Min	Max	Error 🔽	1	
	081 (081)	Benches)	I-FOL V High 1 V Spe	ctnur v Synch v 1	VSTop V Cam Sharv M	ntity ure	on/off	On _ 10		3 11048	-Si StdMaxS	Code 201		
	081 (081)	TMMAL (TMMA	L-EOL V Low1 V Spe	ctrurr V Synch V	VSFront VSFron		On 🗸		3 0	3 75dB-	Sp V StdMaxS	201		
	081 (081)	TMMAL (TMMA	L-EOL V High 1 V Spe	ctrun 🗸 FixFs 🗸	VSTop 🧹 Engine 🗸 M	ax 🗸 🔽	Off 🗸	On 🗸 16	5 0	3 FixMin	Sp - FixMaxSr	Sot th	e limit calcula	tion
	081 (081)	TMMAL (TMMA	L-EOL 🧹 High 1 🗸 Spe	ctrun 🧹 🖡 FixFs 🗸	VSSide 🧹 Engine 🗸 M	ax 🗸 🔽	Off 🗸	On				JULIN		lion
	081 (081)	TMMAL (TMMA	L-EOL 🧹 High 1 🗸 Spe	ctrun 🧹 🖡 FixFs 🗸	VSFront 🧹 Engine 🗸 M	ax 🗸 🗹	Off 🗸	On 16	6 0	3 Fix Min	Sp 🧹 FixMaxSr -	param	neters (Offset,	%+Mean,
	081 (081)	TMMAL (TMMA	L-EOL V High 1 V Spe	ctrun 🗸 Mix 🗸	VSTop 🗸 Crank Sh 🗸 M	ax 🗸 🗹	On 🗸	On Con		3 11046	Si. StdMarS	C+d D/	ov factor Min	and May
	081 (081)	TMMAL (TMMA	L-EOL V High 1 V Spe	ctrum Vix V	VSFront 🗸 Crank Sh 🗸 M		On V	0n v 8		3 11088	StdMaxS	Stu.De	evlactor, ivilli	anu wax
	081 (081)		L-EOL V High 1 V Spe	ctruir V Synch V	VS5ide VSEront v Cam Shat v N					3 11048	StdMaxS	bound	dary) in these	columns.
	081 (081)		L-EOL V High1 V Spe	ctrurr V Synch V	VSTop				3 0	3 110dB	-Si V StdMaxS			
	081 (081)	TMMAL (TMMA	L-EOL 🗸 High 1 🗸 Spe	ctrur 🗸 Synch 🗸	VSSide 🤍 Crank Sh 🗸 M	ax 🗸 🔽	Off 🗸	On V 8	3 0	3 110dB	-SI V StdMaxS	201		
	081 (081)	TMMAL (TMMA	L-EOL 🧹 High 1 🗸 Spe	ctrur 🗸 Synch 🗸	VSFront 🧹 Crank Sh 🗸 M	ax 🗸 🔽	On 🗸	On 🗸 🛛 8	3 0	3 110dB	StdMaxS	201		
	081 (081)	TMMAL (TMMA	L-EOL 🧹 Low1 🗸 Spe	ctrur 🧹 Synch 🔍	VSTop 🔍 Crank Sh 🗸 M	ax 🗸 🔽	On 🗸	On 🗸 🛛 8	3 0	3 75dB-	Sp 🗸 Std Max S	200		
	081 (081)	TMMAL (TMMA	L-EOL 🗸 High1 🗸 Spe	ctrur 🗸 Mix 🗸	VSSide 🧹 Crank Sh 🗸 M	ax 🗸 🗹	Off 🗸	On V 8	3 0	3 110dB	StdMaxS	201		
	081 (081)		L-EOL V Low1 V Spe	ctrurr V Synch V	VSSide VS		01	On V 8		3 /5dB-	Sp StdMaxS	200		
						1	1	↑ ↑	1	<u>↑</u> 1		↑	Error code	can be
						M		n vj u		31		∠ <u>⊃</u> ∪	set for eac	h Clavic
													set for eac	II Clavis
		n 120 b bl be 1	Kein Filter Suchen	-		Swi	tch lim	hit				×	individually	/
Polygon settings	X	Polygo	ons						~		1	•		
ist name FixMinSpec	trum					eva	luation	n On/Of	t				1	
New	Delete					in t	his coli	umn						
New	Delete	For curve v	alue instru	ments. Mir	and Max									
Location -	~	houndario	are polygo	ne Those	aro					-		• ••		
х	Y	boundaries	s are polygo	ins. mese	are					Ent	er a valu	e in the	e bottom	
		defined in a	a separate v	window.						row	and nre	ss the	hutton	
	120									101			- button	
5000	125	select a sp	ecific instru	ment to ac	Livate the					to a	ipply tha	it value	to all rows.	
15000	110	button.												
* 0	0	5 .												
		Enter a nev	v name in t	ne selectio	n box									
		and press [Newl to cre	eate a new	nolvgon									
					P									

DIS

Defect Codes

DIS COM

2 = no evaluation, 3 = system error

Defect codes and defect messages can be freely defined in the parameter database.

Error Codes

The defect codes are then assigned to measured values in the [Measurement Value Setup] or [Single/Curve Values Limits] forms.

	Iist of error codes	– 🗆 ×	"Priority" defines the
	Error code Error text	Priority Group Shadow group 🔺	sorting of defect
Error code numbers	1 Nick (Peak)	900 Nick Mall No.	messages. The defect
can be chosen freely	2 2 Nick (Crest)	900 5: Nick 🗸 No 🗸	with highest priority is
(0 is not allowed,	10 10 Gearbox loud	100 7: Spectrum 🔍 No 🔍	listed first and is used for
no upper limit).	11 11 Shaft loud	100 7: Spectrum V No	listed first and is used for
· · · · · ·	20 20 Order loud (Spektral)	200 7: Spectrum VNo	standard production
	21 21 Orderloud (Imbalance)	200 /: Spectrum V No	statistics.
The "External error code"	101 [Gearmesh loud (Speed-Band)	600 6: Gear Mesh w No	
(or PLC error code) is the	102 100 Order loud(Spectral Track)	100 6: Gear Mesh V No	
number sent as a result	200 200 Excentricity	600 6: Gear Mesh 📈 No 🔍	Errors are corted into
to the PLC. Multiple	300 Modulated Noise	100 7: Spectrum	
errors can use the same	900 900 System: Vibration sensor defect or not attached	999 10: System 🔍 No 🔍	groups, which are
"external" code.	910 910 System: Measurement incomplete (no speed signal?)	999 9: Testbench 🗸 No 🗸	defined in a separate
	911 911 System: Speed under bounds	999 9: Testbench V No	form.
	912 912 System: Speed above bounds		The error group of the
Add a new defect	999 999 Tas Box processing error	999 10: System V No	error with highest
code definition in the	Error text message must		priority defines the
last line of the list	he single lines		priority defines the
	be single lines.	Edit error groups Shadow rules	overall result code.
	Chinese or other Unicode		
	characters are allowed.		Overall result codes:
		-	1 = OK, 0 = NOK,

Initiate new learning of limits

There are two ways of initiating a re-learning of all limits:

- The direct way: delete the learn files
- The delicate way: use the parameter data base (next page)

The direct way

On the measurement computer(s), quit the measurement application. Go to the folder

C:\Discom\Measurement\MultiRot\(Project name)\Locals\LearnData\

Delete all files in there (or only those for the base types you wish to re-learn), then start TasAlyser again.

The delicate way

Although the learn data are saved locally on the measurement computer in the LearnData folder, learning is managed in the parameter database (see next page).

This allows initiating a new learn for several test stands at once (if a central parameter database is used), re-learning only specific limits (e.g. only for a specific test step), or refining the learned limits with additional learn data (instead of starting all over).

Initiate new learning in Parameter Database

In the parameter data base, open the "Learn Parameter" form and press "Relearn all": B Data of : GM-Y4M. Set learn parameter Type (Basetype) Test Bench (Bench Test state Instrument Channel Signal Location Measurements Add Base Type External FDOut BK2 (BK2) GM-Y4M.1 Crest FrontSpeed Check Max М Add Type GM-Y4M.2 BK3 (BK3) 1-D Crest-Track FixFs LaneForce Final CheckMin F <-P RK4 (RK4) GM-Y4M 3 2-C CurvePolygon Mix LanePositn Gear CheckRange Remove Type BK5 (BK5) V-Track MixI R Gearbox Design Data D All types benches 🔽 All test steps All instruments All channels All signals All locations Test Setup Bench group (Test Basetype (Types) Test Test Instrum Channe Signal meas d Learn Releam Single Value Limits Releam Learn parameter Ť ersion Commer Releam all Star -Select project Edit Show Advanced Settings Leam 131025 TF Datensatz: I4 | 4 | 1 ▶ |▶| ▶*| von 66710 11+

You can select specific types, test stands, test steps or measured values in the upper part in order to re-learn only specific limits.

To refine some limits, enter a number (e.g. 50) into the "Learn +n" column.

If you do not have the "Learn Parameter" button in your project, go to the Limit Forms and press the "Expand" button in the lower right corner to get the learn parameter settings:

-8			Limit	t Curve Settings				– 🗆 X
	Type (Basetype)	Test Bench (Bench G	Test state	Instrument	Channel	Signal	Location	Measurements R
C Only Measuring	E0000270 (E000027 E0000705 (E000070 EDS8-4.3 (EDS8-4.3	EDS8-TS1 (EDS8)	Coast-1 Coast-2 Coast-3 Drive-1	Crest-Track CV-Track Kurtosis-Track	FixFs Mix SPS Sunch	SpdEM SpdOut SodOu+1	EM FDIn FDIn FDIn ×	EM_H1 M EM_H10 F EM_H2 C FM_H2 C FM_H2 P
Add Combinations	All types	All test benches	All test steps	All instruments	All channels	All signals	All locations	All measurements D
Basetype (Types) EDS8-4.3 (EDS8 EDS8-4.3 (EDS8 EDS8-4.3 (EDS8	Bench group (Test Benches) EDS8 (EDS8-TS EDS8 (EDS8-TS EDS8 (EDS8-TS	Test state Instrum	ent Channel Sig al- VS al- Mix VS al- VS Tra Mix VS	nal Location m 1 ↓ Input She ↓ E 1 ↓ Input She ↓ E 1 ↓ Input She ↓ T	eas.q Measur Eval antity e on/off M_H V V Off v M_H V Off v rack V Off v t t	Store Offse On ∨ 17 On ∨ 17 On ∨ 17 On ∨ 17 On ∨ 17	%Offset StdDev M 0 1,5 StdI 0 1,5 StdI 0 3 StdI ↑	lin Max Error Mir ↓ 550 Mir ↓ 550 Mir ↓ 550 Mir ↓ 550 Mir ↓ 500 ↑
					🔽 <mark>On</mark> 🗸	On <mark>, 0</mark> 0	50 3	-
Datensatz: H 4 1 Measurements	von 747 🕨 🕨 🛤	Kein Filter Su	uchen					

Since the learn parameter are associated with the limit parameters, if you want to relearn all limits, you have to initiate this twice: for the single value and for the curve limits.

Learning (of mean value and standard deviation) is done even when evaluation is switched off for a Clavis.

When a new metric is created, it will automatically start learning (independent of whether it is currently evaluated against a limit or not).

Base Types: iPhone models

DIS COM

The parameter data base uses types and base types.

Limits, testing parameters and the like are linked to base type.

The type name is used by test stand control and appears in measurement reports, result data base and production statistics.

In the same manner test stand groups can have multiple test stand names.

How To Create a New Base Types

DIS COM

A **Base Type** is different from other types by teeth numbers or other kinematic properties. All limit and measurement parameters are linked to base types.

Each base type can have more than one associated **Type Names**. Type names are used for production statistics and PLC communication.

A new base type is always **created as a copy of an existing** base type. Afterwards, the teeth numbers and other properties are modified as needed.

Additional Type Names

Each base type can have more than one associated type name.

Production statistics and evaluation use type names by default, but limits are linked to base types. Every base type also appears as a type name.

DIS

Rotors and Order Sources

Creating new metrices is done in the parameter database. It involves choice of method ("instrument"), definition of calculation parameters and creation of Clavis entries for the values.

Creating Metrics

Creating a new metric involves three steps:

- 1. Choose the appropriate instrument in the [Limit Settings] form
- 2. Create a new measurement parameter set for this instrument
- 3. Create the measurement values for the new parameter

Creating Measurement Values

After having created the Measurement Parameter (calculation parameters), the third step is to create the actual values (the Clavis list).

DIS

Although the TasAlyser measurement application is a central component of the Discom production test system, after the initial setup users interact with it rather little.

TasAlyser

The TasAlyser measurement application loads a **measurement project** which defines the processing and display modules (like the Excel application load a spreadsheet which contains the actual data and calculation rules).

The user interface offers multiple data and result display windows.

Internally, TasAlyser uses multi-processor parallel computing and can process the sensor data faster than real-time.

DIS CO

System Configuration and Favorites

DIS

Gearbox Testing

Test Stand Communication

The TasAlyser application and the test stand control usually* talk to each other via UDP (network) or a serial RS232 interface.

The test run is controlled using **text commands**, and TasAlyser answers with text messages.

In the Output window (usually docked at the bottom of the main window) the communication can be monitored:

TasAlyser provides a **wide range of commands**, which can be **extended** for special purposes.

Examples for commands:

Command	Description
Insert: [Type]	Get ready for a new test run with gearbox [Type]
Mode: [A]	Select test step [A]
Measure: 1/0	Measurement start/stop
Remove:	End test run.
Result:	1 = OK, 0 = not OK,

* Optionally, other ways of communcation can be used, e.g. Profibus, bit parallel or TCP/IP. But also when using Profibus or TCP/IP, the communication has the form of text messages.

Transmission Testing

TasAlyser records each test run in a wave file.

These wave files can be analyzed further with TasWaveditor.

DIS COM

System Overview: Wave Files

DIS COM

GearbookTesting

Wave File Recording

DIS COM

recall the last recorded

The TasAlyser application records all sensor data directly into a wave file. Channel information and test sequence cue points are stored in the wave file header.

From such a wave file, the complete test run can be re-played.

Wave files cannot be larger than 2 GB, which limits the maximum recording time. If needed, the recording can be split up into parts. Recordings can be placed in separate folders for OK and nOK measurements.

When the maximum directory size is reached for one of the folders, the oldest recordings are deleted automatically.

Wave Playback, TasWavEditor

TasAlyser-recorded wave files do not only contain the multichannel sensor data but also additional channel descriptions (like calibration) and data about the test sequence (called "cue points") for test steps and so on.

This way, the test can be exactly re-played in TasAlyser. For the processing and evaluation in TasAlyser, there is no difference between a real measurement and a wave playback. (You can even use wave playback for limit learning.)

You can use **TasWavEditor** to examine the contents of the wave files. The TasWavEditor also shows channel information and the test run cue points and can play the sounds.

You can also load the wave files into standard audio processing software or import them into third party analysis systems.

Learning Limits from Wave Files

You can use wave recordings to learn limits.

This is for example useful if you are in a prototype or start-of-production phase where you have only a small number of transmissions available.

ame	Signal ID	Unit	Signal type
ST	11	m/s ²	Sensor
SL	102	m/s ²	Sensor
М	104	m/s ²	Sensor
utSpd1 OutSpd2	6 7	rpm	Speed Tis24
SR	103	m/s ²	Sensor
			· · · · ·
	ame ST SL VI utSpd1 OutSpd2 SR	ame Signal ID ST 11 SL 102 VI 104 .tSpd1 OutSpd2 6 7 SR 103	ame Signal ID Unit ST 11 m/s ² SL 102 m/s ² VI 104 m/s ² LtSpd1 OutSpd2 6 7 rpm SR 103 m/s ²

- 1. Initiate a new learning (for example by deleting the learn files in the C:\Discom\Measurement\MultiRot\(ProjectName)\Locals\LearnData folder)
- 2. Call up the wave player (F12) and from there the wave player options.
- 3. In the wave player options, activate the "Learning" option.
- 4. Use the file browser from the wave player to load all intended wave files at once (select multiple files in the file open browser).
- 5. Press the "Play" button. The wave player will run all selected files and limits will be learned.
- 6. Switch the "Learning" option back off afterwards to avoid unintended learning during later playbacks.

Signal Monitor

DIS COM

The signal monitor routes the data of selected sensor channels to the PC soundcard of the measurement computer.

Signal Monitor

By connecting headphones to the measurement signal, you can directly listen to (for example) the accelerometer signal.

Name	Signal level	left	right
Speed	106% = +0.6 dB	0	0
M1	5% = -24.6 dB	0	0
M3	2% = -33.2 dB	0	0
Vibration	76% <mark>=</mark> -2.4 dB	0	0
M2	2% = -33.2 dB	0	0
Speed2	2% = -33.3 dB	0	0
Audio monitorin	g active Channel coupling Primary Sound Drive	er	
Output amplific	ation: 🔲 Auto amplification		

In addition, the signal monitor shows the recording level for all sensor channels. Here you can check if all signals have enough strength or if a signal is overdriven.

Double-click in a line of the level display to switch between gain percentage and absolute sensor values. The maximum gain is changed in the TAS box settings.

The signal monitor also works when replaying a wave file, so this way you can listen to what was recorded.

Sensor Configuration Switching

In some projects, different sensor configurations are used for different tests.

Examples: different housings of models require different sensor positions, or test stand uses a turntable with two sensor sets. In cases like these, two (or more) **Sensor Configurations** are set up in the parameter data base. In addition, a set of 'generic' sensor names exists. These generic names are used for parametrization.

Example:

Sensor Configuration "SC-A" Sensors VS1-A, VS2-A Sensor Configuration "SC-B" Sensors VS1-B, VS2-B 'generic' sensors for parametrization: VS1, VS2

Before the actual test run starts, TasAlyser determines which sensor configuration has to be used for the current test run and applies **Signal Routing** to switch between sensor sets.

The sensors of the selected configuration will appear under the 'generic' names in the measurement results and in the wave files.

The not selected sensors will also be contained in the wave files, but with their original names.

(In this example, configuration A is used, and the wave file will contain the channels VS1, VS2, VS1-B and VS2-B.)

Selecting the Sensor Configuration can be done by assigning sensor configuration with base types in the parameter data base ("Test Setup"), or the test stand can send the command SetSensorConfig. (In the latter case, the measurement results will automatically contain the additional information which configuration was selected.)

Transmission Testing

The 'Presentation' application – renamed to 'Marvis' recently – is used to evaluate the curve data stored in result files.

DIS

Measurement Result Archives

The measurement application stores all result data in an **archive file**.

These archive files are inserted into the **Result data base** by the **Collector Service**.

The result data can be evaluated using Web.Pal or the Presentation (Marvis) application.

The Presentation application can load archive files and results from the data base in parallel.

DIS

Presentation can be done automatically by so-called Rapports. With rapports, standardized multi-page reports can be produced easily.

DED CON
Measurement Archive Evaluation: Marvis

Marvis or "Presentation application" is used for displaying and evaluation of the data contained in measurement archives and the result data base. With Presentation, evaluation can be done interactively as well as automatic production of complete reports.

You can load many measurements at a time and produce stray bands or A/B comparisons. The Presentation's graphics can be directly imported into Microsoft Office (like Powerpoint). Measurement data can be exported to Excel.

Presentation is handled using a tabbed control window with categories for different tasks.

The data is displayed on layout pages. Each page corresponds to a printable sheet of paper and can be designed individually. You can use as many pages as you want.

The elements within a layout page are called graphics modules. There are many kinds of graphics modules, like curve plots, text boxes, bar charts or colored lists.

All layout pages, display settings etc. are stored in files within one folder, the Presentation Project folder. One of these files is the project base file which you load into Presentation to use that project.

Using the Presentation App

You can load measurements into Presentation either by querying the result data base or by loading archive files.

Use the "Q" button on the toolbar to get measurements from the result data base:

In order to load an archive file, press the "file open" button in the toolbar or the "<<" button in the "Archive" category of the control window:

Or just drag the archive files from Windows file explorer and drop them into the Presentation window.

After one or more measurements have been loaded, select a Rapport from the list in the right toolbar and start it with the button

> Select a layout page from this list to pop up the window:

Layouts: Spektro-4

Un-Load Archives:

The X buttons unload one or all archives.

The X button in the toolbar unloads all loaded measurements and cleans all graphics.

Discom Production Testing

Rapports: Spektrogramme 💌

The List of Measurements

In the List section of the control window, you can see all loaded measurements.

Marked measurements (multiple measurements can be marked)

Highlighted measurement (only one measurement can be highlighted)

Selected measurement (select list lines in the normal Windows fashion)

Right-click on a measurement in the list to call up a context menu with additional functions:

When you mark or highlight measurements in the list, the according curves are redrawn colored.

DISC

Or select curves (shift+click+drag rectangle) to mark them.

2500

dB-A

Rpm

2000

Groups of Measurements

DIS COM

Use 'Groups' to analyse the differences between batches of measurements.

The result database is filled with information from the measurement archive files. This is the task of the Collector Service.

DIS COM

Discom Result Database Overview

DIS COM

Working with multiple test stands

DIS COM

The result database and the parameter database master copy reside on a central server. Results are collected from the test stands to the server, and the parameter database is distributed from there to the test stands. Usually you access the server via Web.Pal and remote desktop from your office workstation.

Network exchange with a server

Information exchange between measurement PCs and server uses shared folders and file transfer. The Collector Service retrieves the result files from the test stands, moves them to the local inbox folder and then inserts them into the result database.

DIS COM

Local Result and Parameter Databases

If no dedicated server is available, the result data base and Web.Pal service can also be hosted on the measurement PC.

DIS

If a network connection is available, results and Web.Pal can still be accessed from within the company network.

Result Database + File System

DIS COM

The result database contains for each test run all general information (serial number, time stamp, result, defect messages etc.) and all single value measurement data.

Curve data (spectra, order tracks) and spectrogram data are stored in files in rdt format, which are sorted into week folders and daily files. The database contains an index into these files, so that any specific curve can be found and loaded directly.

Wave Collector

Normally, the wave recordings of the test runs stay on the measurement PCs in the designated Sound folders. The combined storages space of all test stands is in may instances larger than the available server space, and not moving the wave files to the server keeps network traffic low.

DIS

Nevertheless, there are situations where it is desirable to have all wave files on the server. This can be achieved by externally moving the files, or by using the Discom wave collector.

The Wave Compressor in TasAlyser creates (optionally reduced) copies of the wave recordings which are then transferred to the server.

Sensor and A/D converter calibration ensures the stability and reliability of the measurement results

Calibration

The TasAlyser measurement application includes a semi-automatic calibration function.

Calibration applies to the complete measurement chain including sensor, amplifier and A/D converter.

The result is the **calibration factor**, which converts a voltage detected by the A/D converter into a physical value (e.g. in m/s² or g) which is measured by the attached sensor.

To calculate the calibration factor, a calibration signal of known quantity is necessary. This signal is generated by a **calibration source**, for example a handheld shaker which produces a vibration with exactly 9.81 m/s² peak.

The properties of the calibration source have to be entered into the measurement system, so the calibration function knows the reference value and can calculate the factor.

To perform the actual calibration, the calibration control function is started and then the calibration source applied to the sensor. The measurement system will detect automatically the presence of a valid signal and calculate the calibration factor.

The calibration procedure consists of the following steps:

- 1. Start A/D converters (initiate a "test run")
- 2. Adjust input sensitivity if necessary
- 3. Open calibration control window and start calibration
- 4. Press calibration signal source against all sensors, one by one
- 5. Check and apply new calibration factors
- 6. Stop A/D converters (cancel "test run")
- 7. Restore changed input sensitivities (if applicable)
- 8. Save new settings
- 9. Project Backup

Details about the steps are described on the following pages.

Opening Calibration Control

To perform the calibration, the A/D converters in the TAS box front end must be active. Therefore, manually initiate a test run using the button [Inserted] in the *command center* window or by pressing F5 on the keyboard. (TasAlyser has to load the parameter data base information to know the signal names and properties.)

Then, open calibration control from the *Favorites* window.

Options]			C	alibration file	Source definition	ons Channel info
Channel	Name	Factor/Offset	Value	Target	Unit	Source	Rel. amplitude
A.3.1	M1	0.01024	0.198	1.000	Pa	℅ BK4230	3%
 A.3.2 	M2	0.01053	0.0380	1.000	Pa	BK4230	1%
 A.4.1 	M3	0.01067	0.0379	1.000	Pa	BK4230	1%
🔶 A.1.2	Vibration	0.02600	21.1	1.02	g	≈ VC10	71%
A.1.1	Speed		1.04		Upm		100%
4.2	reed2		0.00		Upm		1%
					_		

Calibration control shows the TAS box input channels, the assigned signal names and the current calibration factors.

For each sensor you have to specify the calibration signal source (column "Source") and describe what signal that source provides.

During project setup, according source definitions are prepared and assigned. Changes are only necessary if you switch to a different calibration source.

For details about how to set up calibration signal sources, please read page "Source Definitions".

Performing calibration

Open the calibration control window and press **Start calibration**. From now on, calibration control "listens" on all sensor channels for a calibration signal.

Options				C	alibration file	Source definition	ns Channel info
Channel	Name	Factor/Offset	Value	Target	Unit	Source	Rel. amplitude
🔶 A.3.1	M1	0.01024	0.198	1.000	Pa	≈ BK4230	3%
 A.3.2 	M2	0.01053	0.0380	1.000	Pa	8K4230	1%
 A.4.1 	M3	0.01067	0.0379	1.000	Pa	8K4230	1%
🔶 A.1.2	Vibration	0.02600	21.1	1.02	g	≈ VC10	71%
A.1.1	Speed		1.04		Upm		100%
A.4.2	Speed2		0.00		Upm		1%
Manual channe	el selection 💿 AC ga	ain 💿 Zero-Adj.	DC gain		ſ	Start calibration	Apply checked value

"Manual channel selection" must be switched off to enable automatic signal detection.

Press the calibrator source (e.g. shaker) to the sensor. When calibration control detects a "clear" signal, all lines in the channel information table will change to green. If the signal is stable long enough, a new calibration factor is calculated and then shown in the

list in calibration control window.

Press **Channel info** to see the signal and spectrum. Calibration control automatically selects the strongest signal source.

In the spectrum the detected calibration signal and the strongest noise source are marked.

In the Channel Info display you can check whether you have a proper calibration signal. If not, check the sensor and cable connections!

Typical Accelerometer Calibration

The typical calibration sources for accelerometers produce a signal of 1 g (9.81 m/s²) RMS at a frequency of 159.2 Hz. $_{l}$

For such sources and the logarithmic reference of 10⁻⁵g (standard value), the calibration signal corresponds to exactly 100 dB. You can read this value in the table in the [Channel information] window:

🕂 Kalibrierquellen	×
Kalibrierquelle	
VC10 VC10 Veu Lösche	:n
Quellen-Definition	
Kalibratorsional	
Wert 1 Einheit (1) v g v Ospitze	
Kalibratorfrequenz 159 Hz	

 $159.16 = 1000/2\pi$

The peak in the spectrum will typically show a lower value than displayed in the table. The reason is the limited spectral resolution of the spectrum shown in the scope window and does not reduce calibration precision.

The actual measured value may deviate slightly (±0.3) from 100.

When for a sensor channel the calibration was completed successfully, a green check mark appears in front of that line and the new factor is displayed.

If the new factor deviates from the previous one so much that a difference in the measurement results of more than 3 dB has to be expected, no check mark will appear. You still appear the check manually.

When you are done, press the **Apply** selected values button to activate the new values.

	Options				Cali	ibration file	Source definitions	Channel info
	Channel	Name	Factor/Offset	Value	Target	Unit	Source	Rel. amplitude
	🖌 🕐 🔶 A.3.1	🥥 M1	0.0101	0.999	1.000	Pa	🛠 BK4231	13%
1	• A.3.2	M2	0.0103		1.000	Pa	🛠 BK4231	0%
	• A.4.1	\varTheta МЗ	0.0102		1.000	Pa	🛠 BK4231	0%
	• A.4.2	\varTheta M4	0.0108		1.000	Pa	🛠 BK4231	0%
	• A.2.1	VS1	0.0106		1.02	g	🗙 VC10	0%
		Mic		-		Pa		0%
	Manual channel se	election 💿 Fact	or 🔿 Zero 🔿 Offset				Start calibration	oply checked values

+ Calibration Control: C:DiscomMeasure	mentMultiRotMob	ile¥Locals'	calibration.	.xml	×
Options			Calibra	ation file Source definitions	Channel info
Channel Name	Factor/Offset	Value	Target Un	nit Source	Rel. amplitude
🔪 📃 🗢 A.3.1 🛛 🥥 M1	0.0350	3.45	1.000	Pa 📚 BK4231	43%
• A.3.2 • M2	0.0103		1.000	Pa 🛠 BK4231	0%
• A.4.1 🛛 🕥 M3	0.0102	-	1.000	Pa 🛠 BK4231	0%
• A.4.2 🔮 M4	0.0108		1.000	Pa 🛠 BK4231	0%
• A.2.1 🔮 VS1	0.0106	-	1.02	g 🛠 VC10	0%
Mic				Pa	0%
Manual channel selection ③ Factor (Zero Offset			Start calibration	pply checked values
	/				\mathcal{I}

You can enter calibration factors manually. Just click into the according filed in the **Factor/Offset** column and enter the desired value. Set the check mark and press the **Apply checked values** button.

The typical calibration factor of KS91D Sensor (BKS03 with amplifier) is about 0,025 V/g

Adjusting Input Sensitivity

The Calibration function will only accept a proper and clear calibration signal.

To ensure this, several signal properties are checked, e.g. signal-to-noise ratio, harmonic distortion and relative amplitude.

When you get a red lines for the "relative amplitude" in the Channel Info window, one possible reason is that with the current Tas Box input settings, the signal from the calibrator unit is too weak. The Tas Box is typically configured for much stronger ("louder") input signals than the calibrator unit provides, therefore the relative amplitude is too low for calibration.

Signal amplitude 1.20 1.02 g 102 100 dB 300 dB Signal frequency 186 159 Hz Narrow-band a 1.06 1.02 g 100 100 dB 300 dB ADC voltage (s 0.0197 V V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB 300 % Noise frequency 103 — Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3 dB Log. reference 1.00e-005 —		Measurement	Value	Target	Unit
102 100 dB Signal frequency 186 159 Hz Narrow-band a 1.06 1.02 g 100 100 dB 100 dB ADC voltage (a 0.0197 - V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB Noise frequency 103 - Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact - 0.0111 V/g Calibration cha - <3 dB Log. reference 1.00e-005 - - Date 14.09.2019 - -		Signal amplitude	1.20	1.02	g
Signal frequency 186 159 Hz Narrow-band a 1.06 1.02 g 100 100 dB 100 dB ADC voltage (e 0.0197 V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB Noise frequency 103 Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact <3 dB Log. reference 1.00e-005 Date 14.09.2019			102	100	dB
Narrow-band a 1.06 1.02 g 100 100 dB 100 dB ADC voltage (e 0.0197 - V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB STVR 30.2 > 50.0 dB Noise frequency 103 - Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact - <3 dB Log. reference 1.00e-005 - Date 14.09.2019 - -		Signal frequency	186	159	Hz
100 100 dB ADC voltage (e 0.0197 - V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB SIVR 30.2 > su.0 dB Noise frequency 103 - Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact - <3 dB Log. reference 1.00e-005 -	l	Narrow-band a	1.06	1.02	g
ADC voltage (s 0.0107 V Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB SINK 30.2 >30.0 dB Noise frequency 103 — Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3 dB Log. reference 1.00e-005 —			100	100	dB
Relative amplit 0.884 >1.00 % -41.1 >-40.0 dB SINK 30.2 >30.0 dB Noise frequency 103 — Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3 dB Log. reference 1.00e-005 —		ADC voltage (e	0.0197	_	V.
-41.1 >-40.0 dB SIVK 30.2 > 50.0 dB Noise frequency 103 — Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3 dB Log, reference 1.00e-005 — — Date 14.09.2019 — —		Relative amplit	0.884	>1.00	%
SINK S0.2 > S0.0 dB Noise frequency 103 — Hz Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3 dB Log. reference 1.00e-005 —			-41.1	>-40.0	dB
Noise frequency 103 — Hz Harmonic disto 46.7 <5.00		SINK	30.2	>30.0	ав
Harmonic disto 46.7 <5.00 % Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3		Noise frequency	103	_	Hz
Offset -0.00860 0.0 mV Calibration fact — 0.0111 V/g Calibration cha — <3		Harmonic disto	46.7	< 5.00	%
Calibration fact — 0.0111 V/g Calibration cha — <3		Offset	-0.00860	0.0	mV
Calibration cha — <3 dB Log. reference 1.00e-005 — — Date 14.09.2019 — —		Calibration fact	_	0.0111	V/g
Log. reference 1.00e-005 — Date 14.09.2019 —		Calibration cha	_	<3	dB
Date 14.09.2019 —		Log. reference	1.00e-005	_	
		Date	14.09.2019	_	

The solution is to temporarily change the input sensitivity of the Tas Box channel(s) to a lower value like <u>5</u>00mV.

-	₽ ×	s VS-Ord								
Wave Audio	TAS Settings Base Clo	ock Settings			Special Comman	ds	F	Firmware	Versions	
Playback	Channel A.1.1	Active	Signal Sou Spd-Crk	rce V	Input Single En V	Coupling	Sensit	ivity	ICP opera Standard	tion V
	A.1.2 A.2.1 A.2.2	<!--</td--><td>Spd-Crk VSSide VSTop</td><td>▼▼</td><td>Single En ⊽ Single En ⊽ Single En ⊽</td><td>AC ICP ICP</td><td>2V 100mV 200mV</td><td>-</td><td>Standard Itandard Itandard</td><td>▼ ▼ ▼</td>	Spd-Crk VSSide VSTop	▼▼	Single En ⊽ Single En ⊽ Single En ⊽	AC ICP ICP	2V 100mV 200mV	-	Standard Itandard Itandard	▼ ▼ ▼
Signals Speed-Sync	A.4.1 A.4.2		-	▼ ▼	Differential ⊽ Differential ⊽	AC AC	500mV 1V 2V 5V		tandard	♥
Spectra VS-STA						OK	10V 30V	Cancel	Ар	ply
	Wave Audio Playback Tas Box Signals Speed-Sync Spectra VS-STA	Vave Audio Playback Tas Box Signals Speed-Sync Spectra VS-STA	✓ A × Tas Settings Wave Audio Playback Base Clock Settings ✓ Tas Box A/D Channel Settings Channel Active A.1.1 ✓ A.2.2 ✓ A.2.1 ✓ A.2.2 ✓ A.4.1 □ A.4.1 □ A.4.1 □ A.4.2 □	Image: Signale VS-Ord TAS Settings Wave Audio Playback Image: Signals Speed-Sync Signals Speed-Sync Spectra VS-STA		✓ 9 × ✓ Signals VS-Ord TAS Settings Wave Audio Playback Base Clock Settings Special Command Signal Source Image: Channel Active Signal Source Input A.1.1 ✓ Spd-Crk ✓ A.1.2 ✓ Spd-Crk ✓ Signals Speed-Sync A.4.1 - ✓ Spectra VS-STA ✓ Differential ♥	✓ I × ✓ Signals VS-Ord TAS Settings Special Commands Wave Audio Playback A/D Channel Settings SPDIF Channel Settings Image: Channel Active Signal Source Input Coupling A.1.1 ✓ Spd-Crk ✓ Signale En ♥ AC A.1.1 ✓ Spd-Crk ♥ Single En ♥ AC A.1.2 ✓ Spd-Crk ♥ Single En ♥ AC A.2.1 ✓ VSSide ♥ Single En ♥ ICP A.2.2 ✓ VSTop ♥ Single En ♥ ICP A.4.1 - ● Differential ♥ AC A.4.2 - ♥ Differential ♥ AC Spectra VS-STA OK Ø Ø	✓ 9. × ✓ Signals VS. Ord TAS Settings Wave Audio Playback Base Clock Settings Special Commands F A/D Channel Settings SPDIF Channel Settings SPDIF Channel Settings F Channel Active Signal Source Input Coupling Sensiti A.1.1 ✓ Spd-Crk ✓ Sigle En ♥ AC ✓ 100 A.2.1 ✓ VSSide Single En ♥ ICP 200mV 200mV 200mV Signals Speed-Sync A.4.1 - ♥ Differential ♥ AC 100 100 200mV 200mV <td>✓ 0 × ✓ Signals VS-Ord TAS Settings Wave Audio Playback Base Clock Settings Special Commands Firmware A/D Channel Settings SPDIF Channel Settings RPM F Channel Active Signal Source Input Coupling Sensitivity A.1.1 ✓ Spd-Crk ✓ Single En ♥ AC 10V ▼ A.1.2 ✓ Spd-Crk ♥ Single En ♥ AC 10V ▼ A.2.1 ✓ VSSide ♥ Single En ♥ AC 100 ₽ A.2.1 ✓ VSTop ♥ Single En ♥ ICP 200mV 30V 30V</td> <td>✓ 0 × ✓ Signals VS-Ord TAS Settings Wave Audio Playback Base Clock Settings Special Commands Firmware Versions A/D Channel Settings SPDIF Channel Settings RPM Properties Channel Active Signal Source Input Coupling Sensitivity ICP operal A.1.1 ✓ Spd-Crk ✓ Single En ♥ AC 10V ♥ Standard A.1.2 ✓ Spd-Crk ♥ Single En ♥ AC AC V V V Signals Speed-Sync A.4.1 - ♥ Differential ♥ AC SOOmV V V V Spectra VS-STA OK Cancel Ap</td>	✓ 0 × ✓ Signals VS-Ord TAS Settings Wave Audio Playback Base Clock Settings Special Commands Firmware A/D Channel Settings SPDIF Channel Settings RPM F Channel Active Signal Source Input Coupling Sensitivity A.1.1 ✓ Spd-Crk ✓ Single En ♥ AC 10V ▼ A.1.2 ✓ Spd-Crk ♥ Single En ♥ AC 10V ▼ A.2.1 ✓ VSSide ♥ Single En ♥ AC 100 ₽ A.2.1 ✓ VSTop ♥ Single En ♥ ICP 200mV 30V 30V	✓ 0 × ✓ Signals VS-Ord TAS Settings Wave Audio Playback Base Clock Settings Special Commands Firmware Versions A/D Channel Settings SPDIF Channel Settings RPM Properties Channel Active Signal Source Input Coupling Sensitivity ICP operal A.1.1 ✓ Spd-Crk ✓ Single En ♥ AC 10V ♥ Standard A.1.2 ✓ Spd-Crk ♥ Single En ♥ AC AC V V V Signals Speed-Sync A.4.1 - ♥ Differential ♥ AC SOOmV V V V Spectra VS-STA OK Cancel Ap

Do not forget to set the Sensitivity back to it's original value after calibration.

Finalizing Calibration

When [Apply checked values] is pressed in calibration control, the new calibration factors take effect immediately. Additionally, a report documenting the changes is created (see page "Calibration Reports").

When you are done with calibrating, restore the input channel sensitivity settings to the original values (if you had to change them; see page "Adjusting Input Sensitivity").

Close the calibration control and channel info windows. Then, press the "Save" button of TasAlyser main window, or call the Save command from menu File.

Cancel the "test run" by pressing F8 or switching off the [Inserted] button in Command Center window. There is also an according button in the TasAlyser tool bar (red symbol, third from left).

We recommend to create a measurement project backup after calibration. On the measurement PC desktop, you will find a folder "Rotas for Experts" and within the "Tas Backup Tool" (also called "Software Maintenance Tool"). Start it and simply press the [Perform Project Backup] button.

Source Definitions

To perform calibration, you first need the external source of your calibration signal.

In the **calibration control** window, you create an according **source definition** and then assign it to the appropriate **sensor channels**:

Options				C	alibration fi	Source definition	ns Channel info
Channel	Name	Factor/Offset	Value	Target	Unit	Source	Rel. amplitude
🔶 A.3.1	M1	0.01024	0.198	1.000	Pa	≈ BK4230	3%
 A.3.2 	M2	0.01053	0.0380	1.000	Pa	℅ BK4230	1%
 A.4.1 	M3	0.01067	0.0379	1.000	Pa	℅ BK4230	1%
🔶 A.1.2	Vibration	0.02600	21.1	1.02	g	≈ VC10	71%
A.1.1	Speed		1.04		Upm	-	100%
A.4.2	Speed2		0.00		Upm		1%

Each sensor which needs a calibration factor also needs an appropriate source definition (using the correct unit). Therefore, you also have to create and assign source definitions for signals like torque, force, or position, where the calibration factor is not measured but directly entered as a number from a data sheet.

The source definition has to be set up and selected only once, at the first calibration (or when the source is changed).

To create a new source definition, enter the desired name into the list text field and press button [New].

Calibration sourc	
VC10	New Delete
Source definition	
Calibrator properties	· · · · · · · · · · · · · · · · · · ·
Calibrator signal	
Value	1 Unit g ④ effektive 〇 Peak
Calibrator frequeny	0 Hz
Automatic signal dete	ection
Relative magnitude	> 2 % Amplitude stability ± 5 %
SNR	> 30 dB Frequency stability ± 5 %
Harmonics	< 5 %
Calculation of the ca	ibration factor
Averaging by	10 Blocks
Calculation domain	
◯ Time	Use signals above -1 Hz
 Frequency 	Warn on calibration factor change > 3 dB
DC source	Аррју
Cancel	ОК

For DC signals like Torque, you have to create a "DC source" definition (see "Calibration for DC Sources" on next page).

Calibration for DC Sources

DIS COM

Noise sensors like accelerometers, microphones or laser vibrometers generate oscillating voltage (AC signals). Other sensors, for example for torque or force, generate DC voltage signals. For this type of sensors, a **DC Calibration** must be done.

Switch to DC Gain below the list in the calibration control window. Now you can enter the calibration factors for DC signal sources:

Options	Export					Sour	ce definitions	Channel info	or a DC signal.	
Channel	Name	Factor/Offset	Value	Target	Unit	Source		Rel. amplitude	In this example	, according to the
• A.2.1	VS	0.02604	0.00371	1.00	g	≈ yc10			data choot tho	torque concor
 A.2.2 	Mic	0.1000	3.89e-004	1.000	Pa	A Mic	▽ 🗌		uata sheet the	torque sensor
 A.4.1 	ShiftForce	0.02135	1.28	500	N	- Force	- ▼		produces 10 Vo	olts at 500 Nm.
• A.4.2	ShiftPositn	0.2131	-24.0	50.0	mm	= Positi	on (mm) 🛛 🖉			
 A.3.1 	Torque	0.02000	-2.71	1.00	Nm	= Torqu	ie 🗸		The calibration	factor calculates a
A.3.1 Manual channe	Selection OAC gain	Zero-Adj. ODC g	gain	For edit	ing the	e value	pration Ac	o the field	10V ÷ 500 Nm :	= 0.02 V/Nm.

Although you may be copying the calibration factor directly from the data sheet of your sensor and entering it into the list, you still have to define and assign a valid calibration source.

After entering the values, press the button [**Apply checked values**] in the same way as you do after normal (AC) calibration.

DC Offset Calibration

<u>DIS</u>COM

The A/D converters in the Tas Box have a hardware related voltage offset: even if the input signal is zero, there is a small internal voltage producing a non-zero output value.

This offset can be compensated with DC offset calibration.

In Calibration Control, below the channel list, switch to "Zero-Adjustment" and activate "Manual channel selection".

Then press [Start Calibration] button.

Click into the list rows for the sensors you want to calibrate, one by one, and each time wait a moment until the bullet mark turns red and the value in column "Zero" is updated.

Finally, press [Stop calibration], set check marks into all boxes in front of the according list rows, and press [Apply checked values].

-1	 Calibration Co 	ntrol: C:\Discom\Mea	asurement\Multi	Rot∖Project	E\Locals\	Calibratio	on\calibration.	xml		×
	Settings	Display	Export				Source defi	initions	Channel info	
	Channel	Name	Zero	Value	Target	Unit	Source		Rel. amplitude	^
	🔸 A.4.1	Tq_Abtr2	2.435e-05	3.78e-05	0.0	V	= Dm			
	🔶 A.1.1	KS_Get_L	0.00	-1.53e-06	0.0	V	≈ VC10	∇		
	🛛 🔶 A.2.1	KS_EM_Q	-5.283e-06	-1.28e-06	0.0	V	≈ VC10			
	🛛 🔶 A.1.2	KS_EM_L	-1.282e-06	-1.12e-06	0.0	V	≈ VC10	∇		
	🔶 A.2.2	KS_EM_H	0.00	-1.34e-05	0.0	V	≈ VC10	∇		
	🔶 A.3.1	LS_H	0.00	-1.25e-05	0.0	V	℅ MicCalib	▼ [.
	Manual channel	selection OAC gain	🖲 Zero-Adj.	DC gain			Stop calibration	ŀ	Apply checked valu	ies
	Rememb before st	er to switch o arting a norm	ff "Manual al vibratio	channel n sensor	select	ion" ation.				

For noise sensors like accelerometers or microphones the DC offset does not influence the results. Vibrations are analyzed for their changes (frequencies), not their absolute values. Nevertheless, a DC offset calibration can be done also for these channels.

For sensors where the absolute value is used (like torque, force, position), a DC offset calibration is recommended.

Calibration Reports

Use the "Export" function to create a formatted report about the current calibration factors. Each time when you [Apply checked values], a report is created automatically.

DIS

	rement\MultiRot\ Project \	Locals\calib	oration.xml					×]
Options Export					:	Source definitio	ons Chan	nel info	
Channel Name	Factor/Offset	Value	Target	Unit	Source		Rel.	amplitude	
A.4.1 Torque	0.05000	-	100	Nm	= Torque	e ⊽			
• A.3.2 • VS1	0.02331	-	1.02	g	≈ VC10	∇			
🕂 Options 🛛 🖌	0,		1.02	g	≈ VC10 ≈ VC10				
	0.01028	-	1.02	a	≈ VC10	▼			
Main dialog Channel info dialog		B en F	Calibration Re	nort X	+ ~			_	
Show all channels Spectral view logarithmical V								۸ <i>п</i>	
Hold levels after calibration		$\leftarrow \rightarrow$	<u>О</u> б	file:///C:	/Discom/Measi	urement/MultiRot,	1 ¥	VE 1/~	L
dB scale		Calib	ration						
Threshold for value									
display (%) Sampling freq. (Hz): South		EOL3	DX ALG3	3					
General	Zero-Adj. ODC gain	2017-09	9-21.13:56	5:37					
Warn on uncalibrated signals Automatic Insert/Remove		Sensor	Calibration Da	ate Factor	r Of	ffset [V]			
Calibration file		Torque VS1	27/06/2016 10: 07/03/2017 13:	49 0.0 28 0.0233	05 V/Nm -0. 059 V/g	.020723			
		CM_1	27/06/2016 11:	26 0.0100	949 V/g	0			
Export XSLT C:\Discom\Measurement\MultiRot\PrjF\Locals\Calib 😩		CM_2 CM I	27/06/2016 11: 27/06/2016 11:	34 0.0101 31 0.0102	.524 V/g 2844 V/g	0			
	L				5				
In the Ontions, among other settings the			alibrat	tion r	onort	s are in		nd ca	he
		,			eport	s are in		iu cai	I DE
location of the calibration file and the		V	lewed	in w	eb bro	owsers.			
Export folder can be specified.		F	An acco	ording	g style	sheet	for gen	eratir	ga
		-							
		Т	ormati	lea o	utput	is creat	ted auto	omati	cally.

Default storage location of the exported reports:

C:\Discom\Measurement\MultiRot\(Projektordner)\Locals\Calibration

Use the "Tas Backup Tool" to easily create backups of all settings including learned limits and calibration data

DIS

Tas Backup Tool

The Tas Backup Tool assists you in creating project backups.

It is located in the "Rotas for Experts" folder on the measurement computer's desktop. Use it to

- Create a backup copy of the measurement project including all settings and learned limits
- Create a backup of the software executables (TasAlyser etc.)
- Schedule automatic backups

Usage:

- (1) Start Tas Backup Tool from *Rotas for Experts* folder.
- (2) Optionally change backup name. The backup is created as a sub-folder of D:\Backup\Discom.
- (3) Press [**Perform Project Backup**] if you want to save the current settings, learned limits, parameter database, Presentation project etc.
- (4) Press [**Perform Software Backup**] to copy the software executables. This is only needed before installing a new software version.
- (5) Done. Close the Backup Tool.

DIS

To **restore** a backup: locate the according folder D:\Backup\Discom\(*Date-Time of backup*)\Discom and copy it back to C:\Discom.

Tas Backup Tool (previous version)

- Before 2022, the **Backup Tool** (also called **"Software Maintenance Tool"**) had a different appearance, but mainly the same functions:
- $\circ~$ Create a backup copy of the measurement project including all settings and learned limits
- Create a backup of the software executables (TasAlyser etc.)

Usage:

- Start Tas Backup Tool (or "Software Maintenance Tool") from Rotas for Experts folder.
- (2) Optionally change backup name. The backup is created as a sub-folder of D:\Backup\Discom.
- (3) Press [Perform Project Backup] if you want to save the current settings, learned limits, parameter database, Presentation project etc.
- (4) Press [**Perform Program Backup**] to copy the software executables. This is only needed before installing a new software version.
- (5) Done. Close the Backup Tool.

To **restore** a backup: locate the according folder D:\Backup\Discom\(*Date-Time of backup*)\Discom and copy it back to C:\Discom.

Projects, Project Folder

Similar to using the Excel *application* to open an Excel *spreadsheet*, the TasAlyser *application* loads a **measurement project**.

The TasAlyser application is installed in C:\Program Files (x86)\Discom,

The projects are located within C:\Discom\Measurement\MultiRot.

Each project has it's own project folder.

You can very easily open a Windows file explorer for your project folder by using the according command from the File menu.

The project folder contains all information and settings for your project, including the parameter data base, but no test results or measurement data.

To make a simple backup of a project, just duplicate the project folder. The easiest way to do this is using the Tas Backup Tool (Software Maintenance Tool).

The Presentation project folders are located in C:\Discom\Analysis\Presentations. You can make duplicates of these folders – as a backup, or to transfer the project to a different computer (like your desktop workstation). The project folder has the same structure for all projects. In special cases, additional sub-folders may be present.

C:\Discom\Measurement\MultiRot\(Projectname)

Application		Contains the system configuration and the program settings file.
Locals		Contains files and settings which apply only to this computer/test stand. (In a production line with multiple test stands, the project folders of all measurement computers are identical except for the Locals folder.)
	CacheData	Parameter database cache. Contents have to be deleted manually in some rare cases.
	LearnData	Learned mean values for all measurement values; one file per base type. Learn files may be delete to enforce a complete new learning.
(Files)		The calibration file, the Tas box settings file and the Locals.sea file which holds the test stand name.
ParamDb		Here the parameter data base is located. In a sub-folder the automatic backups of the parameter data base are stored.
TempArchives		Intermediate storage location for measurement archives on their way to the result data base server.

DIS

If you want to have a backup copy of the parameter data base only, you just need to copy the data base file "(Projectname)-Qdb.mdb" located in the ParamDb folder.

More Discom Folders

On a standard measurement computer you will find the following folders which are used by the Rotas system:

5	System partition C:	
	C:\Discom\	With sub-folders Analysis and Measurement. Shared for transferring the parameter data base from the server.
	C:\Program Files (x8	6) \Discom\ Installation folder for all Discom software components.
	C:\Outbox	Intermediate storage location for measurement archives on their way to the result data base server. Shared for the Collector service.
0	Data partition D:	
	D:\Sound\	In this folder the wave recordings are stored. Usually has reading share so you can retrieve recordings via network.
	D:\Backup\	For backups generated using the "TasBackupTool"
	D:\Discom-Installatio	on \ Installation packages and tools

DIS

If there is a local result data base on the measurement PC, you will also find the server folders described on the next page.

Discom Folders on a Server

On a server, you will normally find the basic version of the project folder which holds the master copy of the parameter data base. On the data partition there are additional folders for the result data base.

0	System partition C:				
	C:\Discom\	Same as on a measurement system. Contains master copy of parameter data base			
	C:\Program Files (x86	\Discom\ Installation folder for all Discom software components.			
0	Data partition D:				
	D:\Inbox	Intermediate storage location for measurement archives on their way into the result data base.			
	D:\Archives\	Final storage location for measurement archives (week directories, day files)			
	D:\Database\	Storage location of result data base (SQL database file)			
	D:\Backup\	For backup copies made with "TasBackupTool"			
	D:\Documentation\	General and computer specific documentation			
	D:\Discom-Installatio	Source for installation of Discom software and additional tools. Shared as "Discom-Installation"			

REMOTE SUPPORT

We are always here to help you.

Calling for Help

If you have problems with your measurement projects or if you need help with noise phenomena, please contact us.

If possible, prepare to send to us these files:

- Project folder (C:\Discom\Measurement\MultiRot\(Project name)
 Use the Backup Tool to create a project backup. Then compress the backup folder (from D:\Backup\Discom) using Zip or better 7zip.
- ✓ Archive files (from single test runs or a complete day)
- ✓ Wave files of problematic measurement(s) and from normal measurements Archives and wave files should be compressed, too.

Discom has a cloud storage space where you can upload the data to your dedicated, protected customer folder. Please ask us for the access link.

The most efficient help tool: Remote Access (Discom uses TeamViewer)

https://www.strato.de/cloud-speicher/

Software Download

DIS COM

You can install the evaluation tools *Presentation* and *TasWavEditor* on your workstation PC or laptop and use them for analysis of data copied from measurement PC or server.

(The purchase of analysis PCs and TAS box hardware includes a site license for these analysis programs.)

You can download these applications, manuals and documentation from

Thank you for participating!

